
Services in Android can Share Your Personal
Information in Background

Manoj Kumar1 and Sheshendra Rathi2
1Department of Computer Science, Maharaja Surajmal Institute, New Delhi, India

2Eriwssel Network Private Limited

Abstract— Mobile phones have travelled a very long journey in a very
short span of time since its inception in 1973. This wonderful toy of
20th century has started playing significant role in people’s life. More
than 5 billion mobile users are there around the world and almost
90% of the entire earth is under the mobile coverage now. Today’s
smart phones are equipped with numerous features, faster processors
and high storage capacity. Android is a latest trend in this series
whose popularity is growing by leaps and bounds. Android has a
number of components which helps Application developers to embed
distinguish features in applications. This paper explains how the
Service component of Android can share your personal information to
others without users’ interaction.

Keywords— Mobile phones, Android, service component, mobile
applications.

I. INTRODUCTION
 Mobile phones, Smart phones and faster web browsers are
changing the interface to the clients. The cloud based
service which was a dream few years ago is available on
mobile web due to the increased bandwidth and
connectivity. HTML5 adds many new features and
streamlines functionality in order to render processor
intensive add-ons unnecessary for many common functions.
It will be a particular boon to those smart phones for which
supporting Flash has been problematic.

With so many platforms available today, Android seems
to be most promising. Android is a software stack for
mobile devices that includes an operating system,
middleware and key Applications [1]. Android has been
making waves as the best smart phone platform since its
inception in 2007. Android platform market has increased
tremendously with its popularity. ANALYST OUTFIT
Canalys claims that Android will continue to grow at more
than twice the rate of its major smart phone competitors in
2011 [2]. Gingerbread, the eighth update of Google’s
Android is there in the market. Whereas, latest released
Honeycomb version supports multicore-processors and
hardware acceleration for graphics. Android has been
activated over 100 million devices worldwide. With 36
OEM’s 215 carriers, 310 devices and 112 countries,
Android has become a leading platform among others. 4.5
billion Apps have been installed so far with 200 K Apps
available in wide variety of categories in Android market.

II. FEATURES OF ANDROID

Developing Apps for mobile phones is a different
experience than developing desktop applications, web-
applications or back-end server processes. The basic
components of Android are similar but they are packaged
differently to make phones more crash-resistant. The main
components of the Android framework are:
A. Activities

 An Activity represents a single screen with a user
interface [3]. An Activity can be considered as Android
analogue for the window or dialog box in a desktop
application.

B. Content Providers
 A content provider manages a shared set of data [3].

The Android framework encourages you to make your data
available to other applications.
C. Broadcast Receivers

 A broadcast receiver is a component that responds to
system-wide broadcast announcements [3]. It notifies
applications of various events from hardware state changes
(e.g. an SD card was inserted), to incoming data (e.g. an
SMS has arrived).
D. Services

 A service is a component which runs in the background,
without interacting with the user. At number of occasions,
applications will need to run processes for a long time
without any interventions from the users. Activities and
content providers are short-lived and can be shut down at
any time. Services on the other hand, are designed to keep
running.

III. LIFE CYCLE OF A SERVICE COMPONENT

 An Activity starts and stops a service to do some work for
it in the background, examples include playing music even
if the player activity gets garbage collected, polling the
internet for RSS feed/Atom feed updates and maintaining
an online chat connection even if the client loses focus due
to an incoming phone call [7]. Any service is started by
calling startService function. Later onCreate and onStart
functions are called to create and start the service
respectively. At the end on Destroy function is called to
terminate the service. Figure 1 explains the life cycle of the
service component.

 Figure 1: Lifecycle of service

Service is running

onStart()

onDestroy()

The service is stopped (no callback)

Service is started by startService()

onCreate()

Service is terminated

Manoj Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2356-2359

2356

IV. IMPLEMENTATION OF SERVICE
COMPONENT

A. Folders and Files in Android Framework
 While developing any App on Android platform, src

and res folders with other folders are created. There will be
.java file in src folder which is responsible for the main
activity. Activity is the first building block through which
user interacts with the App. We can create other classes in
the same src folder. In res folder we have drawable, layout
and values folders. All the layouts are designed through
main.xml in layout folder. AndroidManifest.xml file is used
to contain the essential information about the application. It
declares the minimum level of the API required for the
application. With several other information’s, this file
contains the necessary permission to run the application.
AndroidManifest file is also used to keep a track on the
different versions of the same App by the Android market.
B. Coding

 Two classes namely ServiceDemo and MyService have
been defined in the following way

1) ServiceDemo.java

To demonstrate the effect of service component, an activity
is being created. As the layout contains start and stop
buttons (Figure 2), buttonStart and buttonStop have been
declared correspondingly in the ServiceDemo class (line 4).
Declared variables have been attached with the buttons
created in layout using setOnClickListener method (line
11, 12). Further, inside the function onClick two cases have
been defined. When the user clicks on start button, it makes
an entry in log file (line 17), it will start the service in
background by calling startService function (line18). In the
next case, when the user clicks on stop button, it will again
make an entry in log file (line 21). It finally stops the
service by calling stopService function (line 22).
startService and stopService methods call the other methods
of MyService class.

TelephonyManager class provides access to information
about the telephony service on the device. Applications can
use the methods in this class to determine telephony
services and states as well as to access some type of
subscriber information [3].To retrieve the subscriber’s
personal information the necessary permission must be
taken through AndroidManifest.xml file.

1. package com.example.ServiceDemo;

/***

Declaration of all the import directives for the required
packages

**/

 2. public class ServiceDemo extends Activity
 implements OnClickListener{
 3. private static final String TAG="ServiceDemo";
 4. Button buttonStart,buttonStop;

/***

 P U B L I C F U NC T I O N S

**/

 // 1. Called when the activity is first created

 @Override
 5. public void onCreate(Bundle savedInstanceState)
 {
 6. super.onCreate(savedInstanceState);
 7. setContentView(R.layout.main);

 // 2. Two buttons buttonStart and buttonStop are
 // there in main.xml

 8. buttonStart = (Button)findViewById(R.id.buttonStart);

9. buttonStop = (Button)findViewById(R.id.buttonStop);

 // 3. Attaching onClickListener with both
 // the buttons

11. buttonStart.setOnClickListener(this);

12. buttonStop.setOnClickListener(this);
 }

 @Override

13. public void onClick(View src) {

// 4. TODO Auto-generated method stub

14. switch(src.getId())
 {
15. case R.id.buttonStart:
16. Log.d(TAG, "onClick: starting srvice");

 // 5. Starting the service with the click of
 // start button

17. startService(new Intent(this, MyService.class));
18. break;
19. case R.id.buttonStop:
20. Log.d (TAG, "onClick: stopping srvice");

 // 6. Terminating the service with the
 // click of start button

 21. stopService(new Intent(this, MyService.class));
 22. break;
 }
 }
 }

Manoj Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2356-2359

2357

MyService.class

26. country =
 mTelephonyMgr.getNetworkCountryIso();
27. version =
 mTelephonyMgr.getDeviceSoftwareVersion();
28. phtype = mTelephonyMgr.getPhoneType();

 // 5. Set the Criteria parameters
29. Criteria cr = new Criteria();
30. cr.setAccuracy(2);

 // 6. Date and time
31. date = new Date();
32. time = date.getTime();
33. Toast.makeText(this," all the values hav been
 read successfully",Toast.LENGTH_LONG).
 show();
 }
34. catch(Exception E)
 {
35. Log.d(TAG, "Error in reading variables in
 onStart");
 }
36. Log.d(TAG, "onStart");
 }
 // 7. onDestroy() Method will be called at the
end of the service
 @Override
37. public void onDestroy() {
38. try {
39. Log.i(TAG, "values of the different variables");

 // 8. Values of the different variables which
were
 // collected in the method onStart() are
being put
 // in the log before the service is going to
 // terminate
40. Log.i("imei",imei);
41. Log.i("network operator",nwOp);
42. Log.i("network type", Integer.toString
 (nwtype));
43. Log.i("country",country);
44. Log.i("phtype",Integer.toString(phtype));
45. Log.i("time",Long.toString(time));
46. Log.i("date",date.toString());
47. Log.i("version",version);
48. Log.i("Phone number",msisdn);
 }
49.catch (Exception e) {
 // 9. TODO Auto-generated catch block
50. Log.i(TAG, "error in writing different variables
 to logcat");
 }

51. Toast.makeText(this, "My Service Stopped,
 Check Log now", Toast.LENGTH_LONG).
 show();
52. Log.d(TAG, "onDestroy");

}
 }

1. package com.example.ServiceDemo;

/**

Declaration of all the import directives for the required
packages

**/
 2. public class MyService extends Service{

/**

 P R I V A T E V A R I A B L E S

**/
 3. private static final String TAG = "MyService";
 4. private String imei;
 5. private String msisdn;
 6. private String nwOp;
 7. private int nwtype;
 8. private String country;
 9. private String version;
10. private int phtype;
11. private long time;
12. private Date date;
 @Override
13. public IBinder onBind(Intent intent) {

 // 1. TODO Auto-generated method stub

14. return null;

 // 2. onCreate() Method will be called at the
 creation of the service
 @Override
15. public void onCreate() {
16. Toast.makeText(this, "My Service Created",
 Toast.LENGTH_LONG).show();
17. Log.d (TAG, "onCreate");
 }
 // 3. onStart() Method will be called at the
 // starting of the service
 @Override
18. public void onStart(Intent intent, int startid) {
19. Toast.makeText(this, "My Service Started",
 Toast.LENGTH_LONG).show();
20. try
 {
 // 4. Retrieve Phone Related Information
21.TelephonyManager mTelephonyMgr =
 (TelephonyManager)getSystemService(
 TELEPHONY_SERVICE);
22. imei = mTelephonyMgr.getDeviceId();
23. msisdn = mTelephonyMgr.getLine1Number();
24. nwOp =
 mTelephonyMgr.getNetworkOperatorName();
25. nwtype = mTelephonyMgr.getNetworkType();

Manoj Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2356-2359

2358

To understand the execution of service component,
different varaibles have been declared in MyService.class.
Other variables may also be declared as per the need.
MyService.class explains that how the vital information of
a mobile user collected without informing the user.
onCreate, onStart and onDestroy are the 3 methods, which
governs the entire lifecycle of service utility. onCreate and
onStart functions are called from onClick method of
ServiceDemo class, when the user clicks the start button.
Inside the onStart method, values in the declared variables
are collected by calling appropriate functions.

Finally, when the user clicks the stop button, onDestroy
method is called. Before the service terminates, the
collected values of the varaibles are put in the log file. The
collected information may either be saved in a databse file
or can be updated to a server directly if the internet
connectivity is available. In the entire process of collecting
and storing the values of different variable, no interaction
was done with the user.

V. OUTPUT

Figure 2 displays the activity screen on an emulator with
start and stop button. Service utility starts with a click on
start button and will stop with a click on stop button. All the
processing will be done in the background.
Figure 3 displays the logcat file. However several options
are available, logcat file has been chosen to keep the values
of the different variable read from the mobile phone. Serial
numbers have been included with some of the lines in the
logcat file which are concerned to our purpose. Serial
number 1 and 2 shows the creating and starting of the
service. Serial number 3 shows the stopping of the service.
Serial number 5 to 13 shows those values which have been
read from the mobile phone.

Fig. 2: Emulator screenshots

VI. CONCLUSION
This paper explains the way in which the information of
any of the mobile user can be collected without much
interaction with the user. It can be understood by the entries
of the different variables in the logcat file that how easily
the privacy of a mobile user can be compromised. SQLite
database can be used and values of the variables can be
stored in a file. The file can be sent to a server dedicated to
collect such files when the internet connection is available.
However on the other end, the service component of
Android can be useful in other instances. A number of apps
require the service utility.

Fig. 3 Logcat file

REFERENCES

[1] http:// en.wikipedia.org/wiki/Android_(operating_system) accessed on
May 12 , 2011.

[2] Nick Farrel “Android will dominate smartphones” accessed on May 11,
2011

http://www.theinquirer.net/inquirer/news/1937165/android-dominate-
smartphones

[3] http://developer.android.com/guide/topics/fundamentals.html
[4] Fan Jiang, Shaoping Ku “How to display the data from database by

ListView on Android” IEEE 2010
[5] http://www.anddev.org/
[6] http://marakana.com/training/android/
[7] Mark L. Murphy Beginning Android 2, Apress Publication.

Manoj Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2356-2359

2359

